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In this paper we consider objects, whose behavior can be described in terms of solutions 
of a system of linear differential equations with random coefficients. Each of these solu- 
tions represents, in our case, a diffusion process. A system of linear differential equations 
with constant coefficients is derived for second moments of this diffusion process. This 
system can, in particular, be used in investigation of mean square stability of a trivial sol- 
ution of the corresponding system of stochastic differential equations(*). 

1. Consider a system of stochastic differential equations of the type 

(1) 
i=l k-1 ‘j=l I 

where wk(t) (t = 1 ,...,tn) are independent Brownian processes. 
When initial conditions are given, Eq. (1) defines, as we know [l to 41, a diffuaion pro- 

cess. A stationary Markov transitional function P (t, x, r) of this process defines a sub- 
group of Iinear operatiors T, 

n 
TJ (4 = ) P (4 2, 44 f (Y) 

X 
on a Banach space B of all Bore1 bounded functions /(x)(x = (xt,...,~~)). 

All bounded functions f(x) which have continuous bounded derivatives of first and sec- 
ond order, belong to the domain of definition D, of the infinitesimal operator A of the sub- 
group Tr. For such functions, we have the following Formula: 

n n R m 7r n 

(3) 

which can be written as 

(4) 

where the coefficients aa@ 

in the right-hand side of 

I. = a& can be found directly from the coefficients bijk. Integral 
t .V 

2) grves mathematical expectation of the function f at the instant 
t under the condition, that initial distribution of the Markov process given by P (t, x, r) is 
concentrated at the point X. This integral may also exist for unbounded functions. For exam- 
ple, it converges for functions of the type f,)(x) = xirt. 
Integral of (2) by ?‘J, 

In the following we shall denote the 

Theorem 1. Functions Ttfkr (x) (k = l,...,n ; 1 = I,...,nf satisfy, at any fixed value 

*) In the proof-reading stage the authors became acquainted with a work by Gikhmadg] in 
which equations for second moments are obtained by a different method. 
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of z, a following system of n (n + 1)/2 linear differential equations with constant coeffic- 
ients 

!$ = i ‘&jg,Z, + fi “t:Bjk + $J ai;kfgij fk < 1) 
(5) 

j=l j==l i,j=d 

and solution of (5) satisfying the initial values g*,(O) = .zkr~ coincides with the functions 

Ttfkl (r)* 

P t0 o f . If f E D, , then we have the equality f3] 

dT,f (Cc)/& = nT,f (z) = 7’fAf (z) (6) 

which, when formally applied to functions fk, , at once yields the system (5). A ri orous 
proof follows. Let us construct for fkl (xl a sequence of functions fkrN (r) = ykN z)yrN (n) d 
where 

i 

2. 

(N + rfti’sign xi, 

IZi/<H 

Izi)),Nfl 

YiN (‘) = liz(xi - N)4 - (xi - Nj3 +- xi, N<X$<N-t_1 
(7) 

-l/r@+ N)*-(zt+ N)3-+zr, w -- ---<x&-N 

converging to fkl lx). Obviously fklN (x) E D, and the equality [3] 

holds. We can easily, at any fixed value of x, pies to the limit in (8) aa N -, do, thus obtain- 
ing Eqs. (5), which proves the theorem. 

No ta 1. Let (r ‘(r) be a finite, completely additive function of Bore1 sets of the domain 
X. It is easy to show that functions 

M,, (r) =, (T, f,* (I), cp) = 1 1 p (r, x* dY) fkl (Y) rp (dx) (91 
xx 

(which define the mathematical expectation of functions fkf (x) at the instant r under the 
condition that rP (I?) is the initial distribution of a Markov process with a transitional func- 
tion P (t, r, l? ) ) also satisfy (5). 

N o t e 2. In the literature (see e.g. [ 5]), E qs. (1) are also interpreted in the sense other 
than that of Ito [ 11. Diffusion process however, resulting from the new interpretation, still 
possesses an infinitesimal operator of the type given in (41, where the only factors that 
change in a predictable manner [S] are the constant coefficients of linear forms accompany- 
ing first derivatives of the function f. This ahows that equations analogous to (5) can be ob- 
tained also in this case. Another method of obtaining these equations is given in [6]. 

2. Trivial solution of (1) shall be called stable in the mean square (see e.g. [7 and 8]) 
if for anye > 0 such 6 > 0 can be found that, when Ix/ * = r- 2+..~+ xn 2< s*, then T,f(zf < 
< s for ali t > 0 where f = %t a f*=.+ .++, 2* If in addition T,f (‘r) + O at r + 00, then the trivial 
solution is asymptotically stable in the mean square. Stability of systems of the type (1) 
was investigated in a number of works (see the Bibliography of [8] ). It is clear that for a 
null solution of (1) to be e.g. asymptotically stable in the mean square, it is necessary and 
sufficient that it is stable and 

BmJfij (I) = 0, for 13 I<6 (i==l,..., n; i=i ,.,., n) 

Theor em 2. Trivial solution of a stochastic system of differential Eqs. (I) is stable 
(asymptotically stable) in the mean square if and only if the null solution of the system of 
n (n + 11/Z linear differential equations with constant coefficients (5) is stable (asymptoti- 
cally stable). 

Proof. Suppose the trivial solution of a stochastic system of differentia1 Eqs. (I) is 
stable in the mean square while e and 6== S(e) are numbers appearing in the definition of 
stabiiity given above. Let g,r (t) (k = I,..., n: 1 = t,‘.., 
following initial values 

n; k < I) be a solution of (5) with the 
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gkas (0) = xk; ( ‘/ad*, gw, (0) = xl; 6 l/d’, &J, to) = “klxlrt gkl(o) = o (10) 
and suppose that gkl (0) = 0 for the remaining rirs of indices k and 1. 

By Theorem 1, gkr (r)= ?‘,f,l (r). Since x 82 therefore when k = 1, 
. . . . n;I = l,..., n; k \< 1 and t > 0, 

=Xkg2 +Xf,,’ 6 

I g,, (t) I‘= I T,fkl (4 I 6%(Tffkk (4 + T,f,, @K Wff (4 < W (11) 

holds. 
We should note that there are a (n + 1)/2 linearly independent soldons of (5) when ini- 

tial values are of the type (10). This fact alone is sufficient to prove the stabiiity of a 
trivial solution of (5). The converse is obvious. The theorem can also be proved for the 
case of asymptotic stability in the analogous manner. 
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